Answer:
1.17m²
Step-by-step explanation:
Total area of cardboard=
[tex]1.6 \times 0.8 = 1.28m {}^{2} [/tex]
Area of circular piece=
[tex]\pi \: r {}^{2} = ( \frac{22}{7} )(0.12) {}^{2} = \frac{198}{4375} m {}^{2} [/tex]
Area of rectangular piece=
[tex]0.2 \times 0.15 = 0.03m {}^{2} [/tex]
Area of 2 triangular pieces=
[tex]2( \frac{1}{2} \times 0.3 \times 0.1) = 0.03m {}^{2} [/tex]
Remaining area of the cardboard= Total area of cardboard - circular piece - 2 triangular pieces
[tex]1.28 - \frac{198}{4375} - 0.03 -0.03 = \frac{21083}{17500} =1.17m {}^{2} [/tex]