Answer:
[tex]E = 14.81\%[/tex]
Explanation:
Given
[tex]n = 150[/tex]
[tex]\sigma = 0.78[/tex]
[tex]c = 0.98[/tex]
Required
The margin of error (E)
This is calculated as:
[tex]E = z * \frac{\sigma}{\sqrt{n}}[/tex]
When confidence level = 0.98 i.e. 98%
The z score is: 2.326
So, we have:
[tex]E = 2.326 * \frac{0.78}{\sqrt{150}}[/tex]
[tex]E = 2.326 * \frac{0.78}{12.247}[/tex]
[tex]E = \frac{2.326 *0.78}{12.247}[/tex]
[tex]E = \frac{1.81428}{12.247}[/tex]
[tex]E = 0.1481[/tex]
Express as percentage
[tex]E = 14.81\%[/tex]