The value of computer decreases with its age until it is worth nothing a computer that was purchases new for 0 years is worth 2220 1540 after 6 years problem whats the value after 8 years and what is the linear function V(x)

Respuesta :

Answer:

[tex]V(x) = -\frac{340}{3}x +2220[/tex]

[tex]V(8) = 1313.3[/tex]

Step-by-step explanation:

Given

Let x represent years and V represents the value.

So, we have:

[tex](x_1,v_1) = (0,2220)[/tex]

[tex](x_2,v_2) = (6,1540)[/tex]

Solving (a): The linear function

First, we calculate the slope (m)

[tex]m = \frac{v_2 - v_1}{x_2 - x_1}[/tex]

This gives:

[tex]m = \frac{1540-2220}{6-0}[/tex]

[tex]m = \frac{-680}{6}[/tex]

[tex]m = -\frac{340}{3}[/tex]

The linear function is calculated using:

[tex]v - v_2 = m(x - x_2)[/tex]

Where:

[tex](x_2,v_2) = (6,1540)[/tex]

[tex]m = -\frac{340}{3}[/tex]

So, we have:

[tex]v - 1540 = -\frac{340}{3}(x - 6)[/tex]

Open bracket

[tex]v - 1540 = -\frac{340}{3}x +\frac{340}{3}* 6[/tex]

[tex]v - 1540 = -\frac{340}{3}x +680[/tex]

Make v the subject

[tex]v = -\frac{340}{3}x +680+1540[/tex]

[tex]v = -\frac{340}{3}x +2220[/tex]

So, the function is:

[tex]V(x) = -\frac{340}{3}x +2220[/tex]

Solving (b): When x = 8

Substitute 8 for x in [tex]V(x) = -\frac{340}{3}x +2220[/tex]

[tex]V(8) = -\frac{340}{3}*8 +2220[/tex]

[tex]V(8) = -\frac{340*8}{3} +2220[/tex]

[tex]V(8) = -\frac{2720}{3} +2220[/tex]

Take LCM

[tex]V(8) = \frac{-2720+2220*3}{3}[/tex]

[tex]V(8) = \frac{-2720+6660}{3}[/tex]

[tex]V(8) = \frac{3940}{3}[/tex]

[tex]V(8) = 1313.3[/tex]

Hence, its value after 8 years is 1313.3