Respuesta :

Answer:

[tex]\theta = 120, 240[/tex], in degrees

Step-by-step explanation:

The secant of an angle is given by:

[tex]\sec{\theta} = \frac{1}{\cos{\theta}}[/tex]

In this question:

[tex]\sec{\theta} = -2[/tex]

So

[tex]\frac{1}{\cos{\theta}} = -2[/tex]

[tex]-2\cos{\theta} = 1[/tex]

[tex]\cos{\theta} = -\frac{1}{2}[/tex]

In the first quadrant, the angle that has cosine of 1/2 is 60º.

The cosine is negative in the second and in the third quadrant.

The equivalent angle to 60º in the second quadrant is of 180º - 60º = 120º.

The equivalent angle to 60º in the third quadrant is of 180º + 60º = 240º

So the values of [tex]\theta[/tex] in the interval are:

[tex]\theta = 120, 240[/tex], in degrees