Ice cubes at 0°C with a total mass of 625 g are put in a microwave oven and heated with 750. W (750. J/s) of energy for 6.00 minutes. What is the final temperature of the water from the melted ice? Assume all of the microwave energy is absorbed by the ice/water and no heat loss by the ice/water. The enthalpy of fusion for ice is 6.02 kJ/mol and the heat capacity for water is 4.18 J/g・°C.

Respuesta :

Answer:

24°C

Explanation:

m = Mass of ice = 625 g

Energy the microwave provides

[tex]750\times 6\times 60=270000\ J[/tex]

Latent heat of melting = 334 J/g

Energy required to melt ice

[tex]625\times 334=208750\ J[/tex]

Actual energy

[tex]270000-208750=61250\ J[/tex]

[tex]C_s[/tex] = Heat capacity for water = 4.18 J/g・°C.

Energy required to melt ice will be equal to the heat absorbed

[tex]Q=mC_s\Delta T\\\Rightarrow 61250=625\times 4.18(T_f-0)\\\Rightarrow T_f=\dfrac{61250}{625\times 4.18}+0\\\Rightarrow T_f=23.4449760766\ ^{\circ}C[/tex]

The temperature is 24°C

Answer:

[tex]T_f=23.34^{\circ}C[/tex]

Explanation:

Given:

initial temperature of the ice cube, [tex]T_i=0^{\circ}C[/tex]

mass of the ice cube, [tex]m=625\ g[/tex]

power of heating by the microwave oven, [tex]P=750\ W[/tex]

time duration of heating, [tex]t=6\ min=360\ s[/tex]

specific enthalpy of fusion of ice, [tex]L=6020\ J.mol^{-1}[/tex]

specific heat capacity of ice, [tex]c=4.18\ J.g^{-1}[/tex]

We find the energy supplied by the microwave:

[tex]E=P.t[/tex]

[tex]E=750\times 360[/tex]

[tex]E=270000\ J[/tex]

The energy required by the given mass of ice to melt:

[tex]E_m=L\times\frac{m}{M}[/tex]

where:

M = molecular mass of the water

[tex]E_m=6020\times \frac{625}{18}[/tex]

[tex]E_m=209027.78\ J[/tex]

Remaining heat that is used in increasing the temperature of the melted ice i.e. water of 0°C:

[tex]\Delta E=E-E_m[/tex]

[tex]\Delta E=270000-209027.78[/tex]

[tex]\Delta E=60972.22\ J[/tex]

Now the rise in temperature of water:

From the heat equation,

[tex]\Delta E=Q[/tex]

[tex]\Delta E=m.c.(T_f-T_i)[/tex]

[tex]60972.22=625\times 4.18\times (T_f-0)[/tex]

[tex]T_f=23.34^{\circ}C[/tex] is the final temperature of the water after the given heat input.