Calculate the average atomic mass of B. The isotopes and abundances are 10B, 19.80% and 11B, 80.20%. Round answer to 3 significant digits.
A. 1.98 amu
B. 10.8 amu
C. 10 amu
D. 8.82 amu

Respuesta :

Given,

The two isotopes of B are 10B and 11B

% abundance of 10B = 19.80

% abundance of 11B = 80.20

Average atomic mass of B

= [tex]\frac{(mass of 10B)(abundance of 10B) + (mass of 11B)(abundance of 11B)}{100}[/tex]

= [tex]\frac{(10)(19.80) + (11)(80.20)}{100}[/tex]

= [tex]\frac{198 + 882.2}{100}[/tex]

= [tex]\frac{1080.2}{100}[/tex]

= 10.802

Therefore, the average atomic mass of B is 10.802 u

Answer: Correct option is B.

Explanation: In this question, we are given two isotopes of Boron.

Mass of isotope [tex]B^{10}=10amu[/tex]

Mass of isotope [tex]B^{11}=11amu[/tex]

Fractional abundance can be calculated as:

[tex]\text{Fractional abundance}=\frac{\% abundance}{100}[/tex]

Fractional abundance of isotope [tex]B^{10}=\frac{19.80}{100}=0.198[/tex]

Fractional abundance of isotope [tex]B^{11}=\frac{80.20}{100}=0.802[/tex]

To calculate average atomic mass of an element, we use:

[tex]\text{Average Atomic Mass}=\sum_{i=1}^{n}(\text{Fractional abundance})_i\times (\text{Mass number})_i[/tex]

Now, putting the values of abundances and mass number of 2 isotopes in above equation, we get:

[tex]\text{Average Atomic mass of B}=(0.198\times 10amu)+(0.802\times 11amu)[/tex]

Average Atomic Mass of B = 10.802 amu

Rounding it off to 3 significant figures, we get

Average atomic mass of B = 10.8 amu.