Respuesta :

Answer:

The Value of Given Limit is option E) 9

[tex]\lim_{x \to 3}(\sqrt{(x^{2}+7)} + 5) =9[/tex]

Step-by-step explanation:

Given:

[tex]\lim_{x \to 3}(\sqrt{(x^{2}+7)} + 5)[/tex]

To Find:

[tex]\lim_{x \to 3}(\sqrt{(x^{2}+7)} + 5) = ?[/tex]

Solution:

x → 3 Implies that x is approaching to 3 not equal to 3

For taking Limit  out we need to put x = 3

∴ [tex]L = \lim_{x \to 3}(\sqrt{(x^{2}+7)} + 5) \\\\= \lim_{x \to 3}\sqrt{(x^{2}+7) } +\lim_{x \to 3}5\\\\=\sqrt{(3^{2} +7)} + 5\\\\=\sqrt{16} +5\\\\=4+5\\\\\therefore L =9[/tex]

∴ L = 9