Respuesta :
Answer :
(a) The value of [tex]\Delta G^o_{rxn}[/tex] for the biological synthesis of ammonia at 298 K is [tex]3.29\times 10^5J/mol[/tex]
(b) The value of equilibrium constant for the biological synthesis of ammonia is [tex]2.14\times 10^{-58}[/tex]
Explanation :
(a) The equation used to calculate [tex]\Delta G^o_{rxn}[/tex] of a reaction is:
[tex]\Delta G^o_{rxn}=\sum [n\times \Delta G^o_f(product)]-\sum [n\times \Delta G^o_f(reactant)][/tex]
The equilibrium reaction follows:
[tex]\frac{1}{2}N_2(g)+\frac{3}{2}H_2O(l)\rightleftharpoons NH_3(aq)+\frac{3}{2}O_2(g)[/tex]
The equation for the [tex]\Delta G^o_{rxn}[/tex] of the above reaction is:
[tex]\Delta G^o_{rxn}=[(n_{(NH_3)}\times \Delta G^o_f_{(NH_3)})+(n_{(O_2)}\times \Delta G^o_f_{(O_2)})]-[(n_{(N_2)}\times \Delta G^o_f_{(N_2)})+(n_{(H_2O)}\times \Delta G^o_f_{(H_2O)})][/tex]
We are given:
[tex]\Delta G^o_f_{(NH_3(aq))}=-26.5kJ/mol\\\Delta G^o_f_{(O_2(g))}=0kJ/mol\\\Delta G^o_f_{(N_2(g))}=0kJ/mol\\\Delta G^o_f_{(H_2O(l))}=-237.1kJ/mol[/tex]
Putting values in above equation, we get:
[tex]\Delta G^o_{rxn}=[(1\times -26.5)+(\frac{3}{2}\times -0)]-[(\frac{1}{2}\times 0)+(\frac{3}{2}\times -237.1)]=329.15kJ/mol=3.29\times 10^5J/mol[/tex]
Thus, the value of [tex]\Delta G^o_{rxn}[/tex] for the biological synthesis of ammonia at 298 K is [tex]3.29\times 10^5J/mol[/tex]
(b) Now we have to calculate the value of equilibrium constant.
Formula used :
[tex]\Delta G^o=-RT\times \ln K[/tex]
where,
R = universal gas constant = 8.314 J/K/mole
T = temperature = 298 K
K = equilibrium constant = ?
Now put all the given values in this formula, we get the value of K.
[tex]3.29\times 10^5J/mol=-(8.314 J/K/mole)\times (298K)\times \ln K[/tex]
[tex]K=2.14\times 10^{-58}[/tex]
Therefore, the value of equilibrium constant for the biological synthesis of ammonia is [tex]2.14\times 10^{-58}[/tex]