Respuesta :

Answer:

the degree measure of pie/4 is 45

Step-by-step explanation:

=pie/4

=180/4

=45

π/4 radians = 45°

Further explanation

The basic formula that need to be recalled is:

Circular Area = π x R²

Circle Circumference = 2 x π x R

where:

R = radius of circle

The area of sector:

[tex]\text{Area of Sector} = \frac{\text{Central Angle}}{2 \pi} \times \text{Area of Circle}[/tex]

The length of arc:

[tex]\text{Length of Arc} = \frac{\text{Central Angle}}{2 \pi} \times \text{Circumference of Circle}[/tex]

Let us now tackle the problem!

This problem is about conversion unit of angles

Remember that :

[tex]\large {\boxed {1 \pi ~ \text{radians} = 180^o} }[/tex]

[tex]\frac{\pi}{4} = \frac{1}{4} \times 180^o = \boxed {45^o}[/tex]  

Another Example:

[tex]\frac{\pi}{6} = \frac{1}{6} \times 180^o = \boxed {30^o}[/tex]  

[tex]\frac{\pi}{3} = \frac{1}{3} \times 180^o = \boxed {60^o}[/tex]  

[tex]\frac{\pi}{2} = \frac{1}{2} \times 180^o = \boxed {90^o}[/tex]

[tex]\frac{3\pi}{2} = \frac{3}{2} \times 180^o = \boxed {270^o}[/tex]

[tex]\frac{3\pi}{4} = \frac{3}{4} \times 180^o = \boxed {135^o}[/tex]

[tex]\frac{4\pi}{3} = \frac{4}{3} \times 180^o = \boxed {240^o}[/tex]

Learn more

  • Calculate Angle in Triangle : https://brainly.com/question/12438587
  • Periodic Functions and Trigonometry : https://brainly.com/question/9718382
  • Trigonometry Formula : https://brainly.com/question/12668178

Answer details

Grade: College

Subject: Mathematics

Chapter: Trigonometry

Keywords: Sine , Cosine , Tangent , Opposite , Adjacent , Hypotenuse, Circle , Arc , Sector , Area , Radian , Degree , Unit , Conversion

Ver imagen johanrusli