Answer:
k = [tex]\frac{1}{9}[/tex]
Step-by-step explanation:
Using the discriminant
Δ = b² - 4ac
For a repeated real solution then
b² - 4ac = 0
Given
16x² - [tex]\frac{8}{3}[/tex] x + k = 0
with a = 16, b = - [tex]\frac{8}{3}[/tex] , c = k
(- [tex]\frac{8}{3}[/tex] )² - ( 4 × 16 × k) = 0
[tex]\frac{64}{9}[/tex] - 64k = 0 ( subtract [tex]\frac{64}{9}[/tex] from both sides )
- 64k = - [tex]\frac{64}{9}[/tex] ( divide both sides by - 64 )
k = [tex]\frac{1}{9}[/tex]