Respuesta :

Use the area of rectangle formula which is:

[tex] \displaystyle \large \tt{A = width \times length}[/tex]

Given that:

  • area of rectangle = 16
  • width = 8
  • length = x-5

Substitute in the formula:

[tex] \displaystyle \large{16 = 8 \times (x - 5)} \\ \displaystyle \large{16 = 8(x - 5)}[/tex]

Distribute 8 in the expression:

[tex] \displaystyle \large{16 = (8 \times x) + (8 \times ( - 5))} \\ \displaystyle \large{16 = 8x - 40}[/tex]

Move -40 to another side and change from -40 to 40.

[tex] \displaystyle \large{16 + 40 = 8x} \\ \displaystyle \large{56= 8x} \\ [/tex]

Then move 8 to divide 56, leaving only x.

[tex] \displaystyle \large{ \frac{56}{8} = x} \\ \displaystyle \large{7 = x} \\ [/tex]

Hence, the answer is:

[tex] \displaystyle \large \boxed{x = 7} \\ [/tex]