Respuesta :

Answer:

B) 4(2[tex]x^{5}[/tex] + [tex]x^{2}[/tex] - 3)

Answer:

Option (a) is correct.

The given polynomial  [tex]8x^5+4x^2-12[/tex]  can be factorized as  [tex]4(2x^5+x^2-3)[/tex]  

Step-by-step explanation:

Given : Polynomial [tex]8x^5+4x^2-12[/tex]

We have to factorize the given polynomial  [tex]8x^5+4x^2-12[/tex] and choose the correct out of given options.

Consider the given polynomial [tex]8x^5+4x^2-12[/tex]

Taking 4 common from each term, we have,

[tex]8x^5+4x^2-12=4(2x^5+x^2-3)[/tex]

Since, we cannot factorize the expression [tex]2x^5+x^2-3[/tex] further using any factorization technique.

So , the given polynomial [tex]8x^5+4x^2-12[/tex] can be factorized as  [tex]4(2x^5+x^2-3)[/tex]

Thus, Option (a) is correct.