Respuesta :
Answer:
p(-2)= 0
p(2)= -16
the value is -2
Step-by-step explanation:
For any polynomial [tex]f(x)[/tex], [tex]k[/tex] is a root of the polynomial only if [tex]f(k)=0[/tex] .
To determine which of the given values is a root of the polynomial ,
[tex]p(x)=x^4-9x^2-4x+12[/tex],
we just have to evaluate the [tex]f(x)[/tex] for each of these values and see if the output is zero.
[tex]f(-2)=(-2)^4-9(-2)^2-4(-2)+12=16-36+8+12=0.\\f(2)=(2)^4-9(2)^2-4(2)+12=16-36-8+12=-16.[/tex]
Since [tex]f(2)=-16[/tex] , we know that [tex]x=2[/tex] is not a root of this polynomial.
Since [tex]f(-2)=0[/tex] , we know that [tex]x=-2[/tex] is a root of this polynomial.