Respuesta :
For given Poisson distribution, μ=0.5, and k=x=4
[tex]P(k)=\frac{\mu^ke^{-\mu}}{k!}[/tex]
so
[tex]P(4)=\frac{0.5^4e^{-0.5}}{4!}[/tex]
[tex]=0.0015795[/tex] approx.
[tex]P(k)=\frac{\mu^ke^{-\mu}}{k!}[/tex]
so
[tex]P(4)=\frac{0.5^4e^{-0.5}}{4!}[/tex]
[tex]=0.0015795[/tex] approx.
The probability that x=4 is x has a poisson distribution with μ=0 is 0.0015795
Poisson probability
The formula for calculating the poisson probability is expressed as shown below:
[tex]P(x) = \frac{\mu^xe^{-\mu}}{x!}[/tex]
Given the following parameters
μ=0.5,
x = 4
Substitute
[tex]P(x) = \frac{0.5^4e^{-0.5}}{4!}\\P(x)=0.0015795[/tex]
Hence the probability that x=4 is x has a poisson distribution with μ=0 is 0.0015795
Learn more on poisson probability here; https://brainly.com/question/9123296
#SPJ6