Respuesta :
[tex]a = 2.7t[/tex]
[tex]v = \int\limits^t_0 {2.7t} \, dt = \frac{2.7}{2} t^2[/tex]
[tex]x = \int\limits^t_0 {\frac{2.7}{2} t^2} \, dt = \frac{2.7}{6} t^3[/tex]
Solve for v with x = 325.
[tex]v = \int\limits^t_0 {2.7t} \, dt = \frac{2.7}{2} t^2[/tex]
[tex]x = \int\limits^t_0 {\frac{2.7}{2} t^2} \, dt = \frac{2.7}{6} t^3[/tex]
Solve for v with x = 325.
Explanation:
The vertical acceleration of the rocket is given by :
[tex]a_y=2.7t[/tex]
Acceleration is given by, [tex]a=\dfrac{dv}{dt}[/tex]
[tex]\dfrac{dv}{dt}=2.7t[/tex]
[tex]v=\int\limits{2.7\ t.dt}[/tex]
[tex]v=\dfrac{2.7t^2}{2}[/tex]..............(1)
Velocity is given by, [tex]v=\dfrac{dx}{dt}[/tex]
[tex]\dfrac{dx}{dt}=\dfrac{2.7t^2}{2}[/tex]
[tex]x=\int\limits{\dfrac{2.7}{2}t^2}.dt[/tex]
[tex]x=\dfrac{2.7}{6}t^3[/tex]
From above equation, we can find the value of t at x = 325 m
[tex]325=\dfrac{2.7}{6}t^3[/tex]
t = 8.97 s
Now put t = 8.97 s in equation (1) as :
[tex]v=\dfrac{2.7(8.97)^2}{2}[/tex]
v = 108.62 m/s
So, the speed of the rocket when it is 325 meters above the surface of earth is 108.62 m/s. Hence, this is the required solution.