Use implicit differentiation to find an equation of the tangent line to the curve at the given points. (x2 + y2)2 = 3x2y − y3;
(a) (0, −1),
(b) (−1/2, 1/2)

Respuesta :

Answer:

a.[tex]y+1=0[/tex]

b.[tex]2x+4y=1[/tex]

Step-by-step explanation:

We are given that

[tex](x^2+y^2)^2=3x^2y-y^3[/tex]

a.(0,-1)

Differentiate w.r.t x

[tex]2(x^2+y^2)(2x+2yy')=6xy+3x^2y'-3y^2y'[/tex].....(1)

Substitute x=0 and y=-1 in equation (1)

[tex]2(0+1)(-2y')=-3y'[/tex]

[tex]-4y'+3y'=0[/tex]

[tex]-y'=0[/tex]

[tex]y'=0[/tex]

[tex]m=y'=0[/tex]

Point-slope form:

[tex]y-y_0=m(x-x_0)[/tex]

Using the formula

[tex]y+1=0[/tex]

This is required equation of tangent line to the given curve at point (0,-1).

b.(-1/2,1/2)

Substitute the value in equation (1)

[tex]2(1/4+1/4)(-1+y')=6(-1/2)(1/2)+3(1/4)y'-3(1/4)y'[/tex]

[tex]2(2/4)(-1+y')=-3/2+3/4y'-3/4y'[/tex]

[tex]-1+y'=-3/2[/tex]

[tex]y'=-3/2+1=\frac{-3+2}{2}=-\frac{1}{2}[/tex]

[tex]m=y'=-1/2[/tex]

Again using point-slope formula

[tex]y-1/2=-1/2(x+1/2)[/tex]

[tex]\frac{2y-1}{2}=-\frac{1}{4}(2x+1)[/tex]

[tex]2y-1=-\frac{1}{2}(2x+1)[/tex]

[tex]4y-2=-2x-1[/tex]

[tex]2x+4y=2-1[/tex]

[tex]2x+4y=1[/tex]