Respuesta :

Answer:


Step-by-step explanation:

Let x = width in ft

    y= length in ft

Given, y = 3+2x ----(1)

Area = xy = 77 ft2

Using (1) to replace y

3x+2x2=77

2x2+3x-77=0

Solve this quadratic equation, a=2, b=3, c=-77

x=(-3(+or-)sqrt(32-4*2*(-77)))/(2*2)

 = (-3 (+ or -) sqrt(9+616))/4

 = (-3 (+ or -) sqrt(625))/4

 = (-3 (+ or -) 25)/4

x = (-3+25)/4   or x = (-3-25)/4

  = 22/4                 =  -28/4

x  = 5.5               x  = -7

x is the length and can't be negative. so, proceed with x= 5.5

xy = 77

y = 77/5.5  = 14

Dimensions of the rectangle are 5.5ft and 14 ft

(Check: 2* 5.5 + 3 = 11+3 = 14)

The area of a shape is the amount of space it occupies.

The dimension of the rectangle is: 14m by 5.5m

The given parameters are:

[tex]\mathbf{Area = 77m^2}[/tex]

[tex]\mathbf{Length = 3 + 2Width}[/tex]

So, the area of the rectangle is:

[tex]\mathbf{Area = Length \times Width}[/tex]

Substitute [tex]\mathbf{Length = 3 + 2Width}[/tex]

[tex]\mathbf{Area = (3 + 2Width) \times Width}[/tex]

Substitute [tex]\mathbf{Area = 77m^2}[/tex]

[tex]\mathbf{77 = (3 + 2Width) \times Width}[/tex]

Replace Width with w

[tex]\mathbf{77 = (3 + 2w) \times w}[/tex]

Open brackets

[tex]\mathbf{77 = 3w + 2w^2}[/tex]

Rewrite as:

[tex]\mathbf{2w^2 + 3w - 77 = 0}[/tex]

[tex]\mathbf{2w^2 + 14w - 11w - 77 = 0}[/tex]

Factorize

[tex]\mathbf{2w(w + 7) - 11(w + 7) = 0}[/tex]

Factor out w + 7

[tex]\mathbf{(2w - 11) (w + 7) = 0}[/tex]

Split

[tex]\mathbf{(2w - 11) = 0\ or\ (w + 7) = 0}[/tex]

Solve for w

[tex]\mathbf{2w = 11\ or\ w = -7}[/tex]

Width cannot be negative.

So, we have:

[tex]\mathbf{2w = 11}[/tex]

Divide through  by 2

[tex]\mathbf{w = 5.5}[/tex]

Substitute 5.5 for width in [tex]\mathbf{Length = 3 + 2Width}[/tex]

[tex]\mathbf{Length = 3 + 5.5 \times 2}[/tex]

[tex]\mathbf{Length = 14}[/tex]

Hence, the dimension of the rectangle is: 14m by 5.5m

Read more about areas of rectangles at:

https://brainly.com/question/9655204