Respuesta :

ANSWER


[tex] \frac{ {(5ab)}^{3} }{30 {a}^{ - 6} {b}^{ - 7} } = \frac{ 25a ^{9} b^{10} }{6} [/tex]



EXPLANATION

To find the expression that is equivalent to
[tex] \frac{ {(5ab)}^{3} }{30 {a}^{ - 6} {b}^{ - 7} } [/tex]

we must simplify it.


We apply the laws of exponents in the simplification.



First, let us share the cubic exponent for each factor in the numerator to obtain,


[tex] \frac{ {(5ab)}^{3} }{30 {a}^{ - 6} {b}^{ - 7} } = \frac{ 5^{3}a ^{3} b^{3} }{30 {a}^{ - 6} {b}^{ - 7} } [/tex]


This gives us,


[tex] \frac{ {(5ab)}^{3} }{30 {a}^{ - 6} {b}^{ - 7} } = \frac{ 125a ^{3} b^{3} }{30 {a}^{ - 6} {b}^{ - 7} } [/tex]


We simplify by applying the following law of exponent,


[tex] \frac{ {a}^{m} }{ {a}^{n} } = {a}^{m - n} [/tex]


Our expression now becomes,



[tex] \frac{ {(5ab)}^{3} }{30 {a}^{ - 6} {b}^{ - 7} } = \frac{ 25a ^{3 - - 6} b^{3 - - 7} }{6} [/tex]



We simplify further to get,


[tex] \frac{ {(5ab)}^{3} }{30 {a}^{ - 6} {b}^{ - 7} } = \frac{ 25a ^{3 + 6} b^{3 + 7} }{6} [/tex]




This finally gives us,


[tex] \frac{ {(5ab)}^{3} }{30 {a}^{ - 6} {b}^{ - 7} } = \frac{ 25a ^{9} b^{10} }{6} [/tex]

Answer:

Step-by-step explanation:

Alright, lets get stared.

The given expression as:

[tex]\frac{(5ab)^3}{30a^{-6} b^{-7} }[/tex]

[tex]\frac{5^3a^3b^3}{30a^{-6} b^{-7}}[/tex]

[tex]\frac{125a^3b^3}{30a^{-6} b^{-7}}[/tex]

[tex]\frac{125a^3b^3}{30}*a^6b^7[/tex]

[tex]\frac{125a^{3+6} b^{3+7} }{30}[/tex]

[tex]\frac{125a^9b^{10} }{30}[/tex]

125 and 30 can be simplified, so

[tex]\frac{25a^9b^{10} }{6}[/tex]

Hence the answer is [tex]\frac{25a^9b^{10} }{6}[/tex]   :    Answer

Hope it will help :)