[tex]\bf \qquad \qquad \textit{ratio relations}
\\\\
\begin{array}{ccccllll}
&Sides&Area&Volume\\
&-----&-----&-----\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3}
\end{array} \\\\
-----------------------------\\\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \cfrac{small}{large}\qquad \cfrac{\sqrt{20}}{\sqrt{45}}=\cfrac{\sqrt[3]{8}}{\sqrt[3]{v}}\implies \cfrac{2\underline{\sqrt{5}}}{3\underline{\sqrt{5}}}=\cfrac{2}{\sqrt[3]{v}}\implies \cfrac{2}{3}=\cfrac{2}{\sqrt[3]{v}}
\\\\\\
\sqrt[3]{v}=3\implies v=3^3\implies v=27[/tex]