Using the first volume and pressure reading on the table as V1 and P1, solve for the unknown values in the table below. Remember to use the rules of significant figures when entering your numeric response.

Answer:
Boyle's law:
It can be expressed as:
[tex]P_1V_1 =P_2V_2[/tex]
where
[tex]P_1[/tex] and [tex]V_1[/tex] are the initial pressure and initial volume values, and
[tex]P_2[/tex] and [tex]V_2[/tex] are the values of Pressure and volume after changes.
As per the statement:
here,
[tex]P_1 = 1.5 atm[/tex] , [tex]V_1 = 2.0 L[/tex] , [tex]P_2= 3.0 atm[/tex] , [tex]V_1 = A[/tex]
To find the A:
using above formula we have;
[tex]1.5 \cdot 2 = 3A[/tex]
⇒[tex]3 = 3A[/tex]
Divide both sides by 3 we have;
A = 1.0 L
Similarly, find B:
[tex]P_2= B atm[/tex] , [tex]V_2 = 6.0 L[/tex]
Then;
[tex]1.5 \cdot 2.0 = 6B[/tex]
⇒[tex]3 = 6B[/tex]
Divide both sides by 6 we get;
⇒[tex]0.5= B[/tex]
or
B = 0.50 atm
To Find C:
[tex]P_2= C atm[/tex] , [tex]V_2= 5.0 L[/tex]
then;
[tex]1.5 \cdot 2.0 = 5C[/tex]
⇒[tex]3 = 5C[/tex]
Divide both sides by 5 we get;
⇒[tex]0.6= C[/tex]
or
C= 0.60 atm
To Find D:
[tex]P_2= 0.75 atm[/tex] , [tex]V_2= D[/tex]
then;
[tex]1.5 \cdot 2 = 0.75D[/tex]
⇒[tex]3 = 0.75D[/tex]
Divide both sides by 0.75 we have;
D= 4.0 L
Therefore, the values are:
A = 1.0 L
B = 0.50 atm
C = 0.60 atm
D = 4.0 L