Respuesta :
A
100 = (60^2 / 16) sin theta cos theta
100 = 225 sin theta cos theta
sin theta cos theta = 100/224 = 0.4444
1/2 sin 2theta = 0.4444
sin 2theta = 0.8888
2 * theta = 62.73 degrees
theta = 31.37 degrees
100 = (60^2 / 16) sin theta cos theta
100 = 225 sin theta cos theta
sin theta cos theta = 100/224 = 0.4444
1/2 sin 2theta = 0.4444
sin 2theta = 0.8888
2 * theta = 62.73 degrees
theta = 31.37 degrees
Answer:
A). 31.43°
B). 225 feet
Step-by-step explanation:
A) From the given equation for horizontal distance h of a projectile is given by
[tex]h=\frac{v²_{0}}{16}sin\theta cos\theta[/tex]
If initial velocity v0 = 60 ft/sec and horizontal distance = 100 feet
Then the equation will be [tex]h=\frac{v_{0}^{2}}{16}sin\theta cos\theta[/tex]
[tex]100=\frac{60^{2}}{32}sin2\theta[/tex]
[tex]100=\frac{3600}{32}sin2\theta[/tex]
[tex]sin2\theta =32\times 100/3600=0.89[/tex]
[tex]2\theta =62.87[/tex]
[tex]\theta =31.43[/tex]
B). If v0 = 60 feet per second
Then we have to calculate the maximum horizontal distance and angle.
Since we know to cover the maximum distance in a projectile motion an object should be thrown at 45°.
Therefore the equation formed will be
[tex]h=\frac{60^{2}}{32}sin2\times 45[/tex]
[tex]=\frac{3600}{32}sin90[/tex]
[tex]=112.5\times 1=225[/tex]
h = 112.5 feet