Answer:
Option b.
Step-by-step explanation:
Given information : [tex]\triangle DE F\cong \triangle FGH[/tex]
We need to check which congruence statement does not necessarily describe the triangles shown if [tex]\triangle DE F\cong \triangle FGH[/tex].
Corresponding part of congruent triangles are congruent.
[tex]\angle D\cong \angle F[/tex]
[tex]\angle E\cong \angle G[/tex]
[tex]\angle F\cong \angle H[/tex]
Using these corresponding angles we can say that
[tex]\triangle ED F\cong \triangle GFH[/tex]
[tex]\triangle FDE \cong \triangle HFG[/tex]
[tex]\triangle EFD\cong \triangle GHF[/tex]
[tex]\triangle FED\cong \triangle HGF[/tex]
In the given options [tex]\triangle ED F\cong \triangle GFH[/tex], [tex]\triangle EFD\cong \triangle GHF[/tex] and [tex]\triangle FED\cong \triangle HGF[/tex] congruence statement are true.
Only [tex]\triangle FDE \cong \triangle FGH[/tex] does not necessarily describe the triangles.
Therefore, the correct option is b.