Respuesta :

Here, Your Answer would be: Option B) ΔFDE ≈ ΔFGH

Hope this helps!

Answer:

Option b.

Step-by-step explanation:

Given information : [tex]\triangle DE F\cong \triangle FGH[/tex]

We need to check which congruence statement does not necessarily describe the triangles shown if [tex]\triangle DE F\cong \triangle FGH[/tex].

Corresponding part of congruent triangles are congruent.

[tex]\angle D\cong \angle F[/tex]

[tex]\angle E\cong \angle G[/tex]

[tex]\angle F\cong \angle H[/tex]

Using these corresponding angles we can say that

[tex]\triangle ED F\cong \triangle GFH[/tex]

[tex]\triangle FDE \cong \triangle HFG[/tex]

[tex]\triangle EFD\cong \triangle GHF[/tex]

[tex]\triangle FED\cong \triangle HGF[/tex]

In the given options [tex]\triangle ED F\cong \triangle GFH[/tex], [tex]\triangle EFD\cong \triangle GHF[/tex] and [tex]\triangle FED\cong \triangle HGF[/tex] congruence statement are true.

Only [tex]\triangle FDE \cong \triangle FGH[/tex] does not necessarily describe the triangles.

Therefore, the correct option is b.