assume that each of the n trails

Given,
The value of n is 8.
The value of x is 0.
The value of p is 0.6.
The binomial expression is,
[tex]P(X=x)=^nC_x\times(p)^x\times(1-p)^{n-x}[/tex]Subsituting the values then,
[tex]\begin{gathered} P(X=0)=^8C_0\times(0.6)^0\times(1-0.6)^{8-0} \\ P(X=0)=\frac{8!}{0!\times8!}\times1\times(0.4)^8 \\ P(X=0)=1\times1\times(0.4)^8 \\ P(X=0)=0.000655 \\ P(X=0)=0.0007 \end{gathered}[/tex]ence, the probability is 0.0007.