Union and Intersection of sets
[tex] \\ \\ [/tex]
A. Indicate whether the statement is true or false.

1.) Union of two sets is the set that consists all the elements belonging either A or to B, or to both.

2.) If A = {2, 3, 4} and B = {3, 4, 5, 6} then A ∪ B = {1, 2, 3, 4, 5, 6}

3.) If M = {a, e, i, o, u} and N = {l, o, v, e} then M ∩ N = {o, e}​

Respuesta :

Answer:

Step-by-step explanation:

1.true

2.true

3.true

Answer:

1)  True

2)  False

3)  True

Step-by-step explanation:

Set Notation

[tex]\begin{array}{|c|c|l|} \cline{1-3} \sf Symbol & \sf N\:\!ame & \sf Meaning \\\cline{1-3} \{ \: \} & \sf Set & \sf A\:collection\:of\:elements\\\cline{1-3} \cup & \sf Union & \sf A \cup B=elements\:in\:A\:or\:B\:(or\:both)}\\\cline{1-3} \cap & \sf Intersection & \sf A \cap B=elements\: in \:both\: A \:and \:B} \\\cline{1-3} \sf ' \:or\: ^c & \sf Complement & \sf A'=elements\: not\: in\: A \\\cline{1-3} \sf - & \sf Difference & \sf A-B=elements \:in \:A \:but\: not\: in \:B}\\\cline{1-3} \end{array}[/tex]

Question 1

The union of two sets is denoted by the symbol ∪.

The union of two sets is the set that comprises all elements in A or B or both.

Question 2

Given sets:

  • A = {2, 3, 4}
  • B = {3, 4, 5, 6}

[tex]\begin{aligned} \implies \sf A \cup B & =\sf \{ 2, 3, 4\} \cup \{3, 4, 5, 6 \}\\& =\sf \{ 2, 3, 4, 5, 6\}\end{aligned}[/tex]

Question 3

Given sets:

  • M = {a, e, i, o, u}
  • N = {l, o, v, e}

[tex]\begin{aligned}\implies \sf M \cap N & =\sf \{ a, e, i, o, u\} \cap \{l, o, v, e \}\\& =\sf \{ o, e\}\end{aligned}[/tex]

Learn more about set notation here:

https://brainly.com/question/28356437

https://brainly.com/question/28353607