Respuesta :

By using properties for trigonometric functions and trigonometric expressions, we find that the exact value of the sine of the angle 5π/12 radians is [tex]\frac{\sqrt{2+\sqrt{3}}}{2}[/tex].

How to find the exact value of a trigonometric expression

Trigonometric functions are trascendent functions, these are, that cannot be described algebraically. Herein we must utilize trigonometric formulae to calculate the exact value of a trigonometric function:

[tex]\sin \frac{5\pi}{12} = \sqrt{\frac{1 - \cos \frac{5\pi}{6} }{2} }[/tex]

[tex]\sin \frac{5\pi}{12} = \sqrt{\frac{1 + \cos \frac{\pi}{6} }{2} }[/tex]

[tex]\sin \frac{5\pi}{12} = \sqrt{\frac{1 + \frac{\sqrt{3}}{2} }{2} }[/tex]

[tex]\sin \frac{5\pi}{12} = \sqrt{\frac{2+\sqrt{3}}{4} }[/tex]

[tex]\sin \frac{5\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}[/tex]

By using properties for trigonometric functions and trigonometric expressions, we find that the exact value of the sine of the angle 5π/12 radians is [tex]\frac{\sqrt{2+\sqrt{3}}}{2}[/tex].

To learn more on trigonometric functions: https://brainly.com/question/15706158

#SPJ1