The winner received 570 votes.
Let the winner candidate be c1
Let the second-place candidate be c2
Let the third-place candidate be c3
[tex]c2=c1-155\\[/tex].........equation 1
[tex]c2=c3+200\\[/tex]
[tex]c3=c2-200 \\[/tex]
[tex]c3=c1-155-200\\[/tex].........by equation 1
[tex]c3=c1-355[/tex]........equation 2
Now we know,
[tex]c1+c2+c3=1200[/tex]
[tex]c1+(c1-155)+(c1-355)=1200[/tex] .....by equations 1 and 2
[tex]3c1-510=1200[/tex]
[tex]3c1=1200+510\\3c1=170\\c1=570[/tex]
Hence, The winner received 570 votes.
Learn more about equations here https://brainly.com/question/16192514
#SPJ4