Answer:
Perimeter = 22.809836694575
Step-by-step explanation:
A(-2, 2) ; B(6,2) ; C(0, 8)
[tex]AB=\sqrt{\left( 6--2\right)^{2} +\left(2-2 \right)^{2} } =\sqrt{64} =8[/tex]
[tex]AC=\sqrt{\left( 0--2\right)^{2} +\left(8-2 \right)^{2} } =\sqrt{40} =2\sqrt{10}[/tex]
[tex]BC=\sqrt{\left( 0-6\right)^{2} +\left(8-2 \right)^{2} } =\sqrt{72} =6\sqrt{2}[/tex]
Then
The perimeter of ΔABC = AB + BC + AC
[tex]=8+6\sqrt{2} +2\sqrt{10}[/tex]
= 22.809836694575