Respuesta :

[tex]\sf\huge\underline{\star Solution:-}[/tex]

[tex]\rightarrow[/tex]Let the women's height be AE and distance between the women and tower be AC.

Also let the height of tower be BC.

[tex]\rightarrow[/tex]Now, clearly it is forming a triangle.

So, in triangle ABC,

[tex]\rightarrow[/tex][tex]\sf{Tan50° \:= \: \frac{BC}{AC}}[/tex]

[tex]\rightarrow[/tex][tex]\sf{1.19 \:= \: \frac{BC}{50}}[/tex]

[tex]\rightarrow[/tex][tex]\sf{1.19 ×50\:= \: BC}[/tex]

[tex]\rightarrow[/tex][tex]\sf{59.5m\:= \: BC}[/tex]

[tex]\rightarrow[/tex]Hence, BC = 59.5m

So, BD(total height of the tower)[tex]\sf{ = \:BC+CD}[/tex]

[tex]\sf{= \:59.5+1.65}[/tex]

[tex]\sf{=\: 61.15m}[/tex]

Therefore, total height of the tower =[tex]\sf\purple{ 61.15m.}[/tex]

________________________________

Hope it helps you:)

Ver imagen BrainlySamrat

Answer:

61.24 m to the nearest hundredth.

Step-by-step explanation:

tan 50 = H / 50  

H =  50 tan 50

Height of the tower = H + height of the woman

= 50 tan 50 + 1.65

= 61.2377 m