Respuesta :
[tex]2~~,~~\stackrel{2-5}{-3}~~,~~\stackrel{-3-5}{-8}~~,~~...~\hspace{10em}\stackrel{common~difference}{d = -5} \\\\[-0.35em] ~\dotfill\\\\ n^{th}\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} a_n=n^{th}\ term\\ n=\stackrel{\textit{term position}}{64}\\ a_1=\stackrel{\textit{first term}}{2}\\ d=\stackrel{\textit{common difference}}{-5} \end{cases} \\\\\\ a_{64}=2+(64-1)(-5)\implies a_{64}=2+(-315)\implies a_{64}=-313[/tex]
Answer:
-313 is the 64th term
Step-by-step explanation:
you take the second term an minus the first term with the second one {2-(-3)}
{=5} then you take two an minus five
it gives you -3 then you press minus five again it gives you negative eight then you press (equals to)until you reach the term you looking for