By definition, if
[tex]b^y = a [/tex]
then
[tex]log_{b}a = y[/tex]
In this case, if
[tex] 4^{y} = 8[/tex]
then
[tex]log_{4} 8 = y [/tex]
We have:
[tex] 4^{y} = 8[/tex]
[tex] 2^{2y} = 2^{3} [/tex]
[tex]\diagup\!\!\!2^{2y} = \diagup\!\!\!2^{3} [/tex]
[tex]2y = 3[/tex]
[tex]y = \frac{3}{2} [/tex] or [tex]y = 1.5[/tex]
logaritmic graph (Follows the attachment):