On a coordinate plane, triangle R S T has points (negative 5, 6), (3, 4), and (negative 2, 2). Which expression can be used to find the area of triangle RST? (8 â™ 4) - One-half (10 12 16) (8 â™ 4) - (10 12 16) (8 â™ 4) - One-half (5 6 8) (8 â™ 4) - (5 - 6 - 8).

Respuesta :

The area of a triangle is the amount of space on the triangle

The expression that represents the area of the triangle is [tex]A = \frac 12|-5(2 -4) +3(2 -6) -2(4 -6)|[/tex]

The coordinates of the triangle are given as:

[tex]R = (-5,6)[/tex]

[tex]S = (3,4)[/tex]

[tex]T = (-2,2)[/tex]

The area (A) of a triangle from its coordinates or vertices are:

[tex]A = \frac 12|x_1(y_3 -y_2) +x_2(y_3 -y_1) + x_3(y_2 -y_1)|[/tex]

Substitute values for x's and y's

[tex]A = \frac 12|-5(2 -4) +3(2 -6) -2(4 -6)|[/tex]

Hence, the expression that represents the area of the triangle is [tex]A = \frac 12|-5(2 -4) +3(2 -6) -2(4 -6)|[/tex]

Read more about areas of triangles at:

https://brainly.com/question/9664477

Answer:

(8 ∙ 4) - 1/2 (10 + 12 + 16).

Step-by-step explanation: