5 cm or 29 cm
Step-by-step explanation:
Let x length is cut off from each measurements.
Thus, the new measurements would be: 20 - x, 41 - x, 44 - x, which forms the sides of a right triangle.
Here, (44 - x) will be hypotenuse and (20 - x) and (41 - x) will be perpendicular legs of the triangle.
Therefore, by Pythagoras theorem:
[tex] {(41 - x)}^{2} + {(20 - x)}^{2} = {(44 - x)}^{2} \\ \\ \therefore \: {(41)}^{2} - 82x + {x}^{2} + {(20)}^{2} - 40x + {x}^{2} \\ = {(44)}^{2} - 88x + {x}^{2} \\ \\ \therefore \: 1681 - 122x + 2 {x}^{2} + 400 \\ = 1936 - 88x + {x}^{2} \\ \\ \therefore \: 2081 - 122x + {x}^{2} = 1936 - 88x \\ \\ \therefore \: {x}^{2} - 122x + 88x + 2081 - 1936 = 0 \\ \\ \therefore \: {x}^{2} - 34x + 145 = 0 \\ \\ \therefore \: {x}^{2} - 29x - 5x+ 145 = 0 \\ \\ \therefore \: x(x - 29) - 5(x - 29) = 0 \\ (x - 5)(x - 29) = 0 \\ x - 5 = 0 \: or \: x - 29 = 0 \\ \\ \therefore \: x = 5, \: 29[/tex]
So, the length that is cut off will be either 5 cm or 29 cm.