A die is rolled 20 times and the number of twos that come up is tallied. Find the probability of getting the given result. [Binomail Probability] Less than four twos

Respuesta :

Answer:

0.5665 = 56.65% probability of less than four twos.

Step-by-step explanation:

For each roll, there are only two possible outcomes. Either it is a two, or it is not a two. The probability of a roll ending up in a two is independent of any other roll, which means that the binomial probability distribution is used.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

A die is rolled 20 times

This means that [tex]n = 20[/tex]

One out of six sides is 2:

This means that [tex]p = \frac{1}{6} = 0.1667[/tex]

Probability of less than four twos:

This is:

[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]

So

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 0) = C_{20,0}.(0.1667)^{0}.(0.8333)^{20} = 0.0261[/tex]

[tex]P(X = 1) = C_{20,1}.(0.1667)^{1}.(0.8333)^{19} = 0.1043[/tex]

[tex]P(X = 2) = C_{20,2}.(0.1667)^{2}.(0.8333)^{18} = 0.1982[/tex]

[tex]P(X = 3) = C_{20,3}.(0.1667)^{3}.(0.8333)^{17} = 0.2379[/tex]

So

[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0261 + 0.1043 + 0.1982 + 0.2379 = 0.5665[/tex]

0.5665 = 56.65% probability of less than four twos.