Respuesta :

Answer:

[tex]a\cdot b\cdot c=\frac{15}{4}[/tex]

Step-by-step explanation:

Vertex is the minimum or maximum point of parabola

Vertex of parabola is (h,k)

Therefore, from given graph (-3,-2) is the lowest point.

Vertex of parabola is at (-3,-2).

Standard equation of parabola

[tex]y-k=a(x-h)^2[/tex]

Substitute the values

[tex]y-(-2)=a(x-(-3))^2=a(x+3)^2[/tex]

[tex]y+2=a(x+3)^2[/tex]

(-1,0) lies on the parabola.

Therefore, it satisfied the equation of parabola.

[tex]0+2=a(-1+3)^2=4a[/tex]

[tex]a=2/4=1/2[/tex]

Now, using the value of a

[tex]y+2=1/2(x+3)^2=1/2(x^2+6x+9)[/tex]

[tex]y+2=\frac{1}{2}x^2+3x+\frac{9}{2}[/tex]

[tex]y=\frac{1}{2}x^2+3x+\frac{9}{2}-2[/tex]

[tex]y=\frac{1}{2}x^2+3x+\frac{9-4}{2}[/tex]

[tex]y=\frac{1}{2}x^2+3x+\frac{5}{2}[/tex]

By comparing with

[tex]y=ax^2+bx+c[/tex]

We get

[tex]a=\frac{1}{2}, b=3, c=5/2[/tex]

[tex]a\cdot b\cdot c=\frac{1}{2}\times 3\times \frac{5}{2}[/tex]

[tex]a\cdot b\cdot c=\frac{15}{4}[/tex]