Respuesta :

Given:

The range of a function is [tex]y<3[/tex].

To find:

The function for the given range from the given options.

Solution:

In option A, the given function is:

[tex]y=3(2)^x[/tex]

Here, [tex](2)^x[/tex] is always greater than 0. So, [tex]3(2)^x[/tex] is also greater than 0, i.e., [tex]y>0[/tex].

In option B, the given function is:

[tex]y=2(3)^x[/tex]

Here, [tex](3)^x[/tex] is always greater than 0. So, [tex]2(3)^x[/tex] is also greater than 0, i.e., [tex]y>0[/tex].

In option C, the given function is:

[tex]y=-(2)^x+3[/tex]

Here,

[tex](2)^x>0[/tex]

[tex]-(2)^x<0[/tex]

[tex]-(2)^x+3<0+3[/tex]

[tex]y<3[/tex]

The range of this function is [tex]y<3[/tex]. So, option C is correct.

In option D, the given function is:

[tex]y=(2)^x-3[/tex]

Here,

[tex](2)^x>0[/tex]

[tex](2)^x-3<0-3[/tex]

[tex]y<-3[/tex]

The range of this function is [tex]y<-3[/tex]

Therefore, the correct option is only C.