Respuesta :

Answer:

Proved

Step-by-step explanation:

Given

[tex]p = 80[/tex] ---- perimeter

[tex]a \to area[/tex]

Required

[tex]x^2 + 40x + a = 0[/tex]

The perimeter is calculated as:

[tex]p = 2(x + y)[/tex]

Where

[tex]x,y \to[/tex] the rectangle dimension

So, we have:

[tex]2(x + y) = 80[/tex]

Divide by 2

[tex]x + y = 40[/tex]

Make y the subject

[tex]y = 40 - x[/tex]

The area of the rectangle is:

[tex]a = xy[/tex]

[tex]a = x * (40 -x)[/tex]

[tex]a = 40x -x^2[/tex]

Equate to 0:

[tex]x^2 - 40x + a = 0[/tex]