Respuesta :

Answer:

The answer is "256.33 ml".

Explanation:

Given

In [tex]25\%[/tex] solution means [tex]25 \ g \ Na_2CO_3 \ in\ 100\ ml[/tex] solution

[tex]\therefore[/tex]  for [tex]675\ ml[/tex] solution mass of [tex]Na_2CO_3[/tex] needed is calculated as

[tex]\to 675 \ ml \times \frac{ 25 \g}{100\ ml} = 168.75\ g \ Na_2CO_3[/tex]

now calculating moles of the [tex]168.75\ g \ Na_2CO_3[/tex]

[tex]moles =\frac{mass}{molar\ mass}[/tex]

[tex]moles \ of \ Na_2CO_3 = \frac{168.75\ g}{105.9888 \ g \ per\ mol}[/tex]  

                            [tex]= 1.592 \ mol \ Na_2CO_3[/tex]

by using the moles and molarity of the stock solution we calculate the volume of the stock solution:  

molarity = moles / volume in liter

so

[tex]\text{volume in liter} = \frac{moles}{ molarity} = \frac{1.592\ mol}{ 6 \ mol\ per\ liter} = 0.26533\ L\\[/tex]

convert liter to ml [tex]\frac{( 0.26533\ L \times 1000 \ ml)}{1\ L} = 256.33\ ml[/tex]