Answer:
173.2 cm²
Step-by-step explanation:
Use the equilateral triangle area formula, A = [tex]\frac{\sqrt{3}}{4}[/tex]a²
Plug in the side length and solve:
A = [tex]\frac{\sqrt{3}}{4}[/tex]a²
A = [tex]\frac{\sqrt{3}}{4}[/tex](20)²
A = [tex]\frac{\sqrt{3}}{4}[/tex](400)
A = 173.2
So, the area of the triangle is approximately 173.2 cm²