7.
The width of a rectangle is 33 centimeters. The perimeter is at least 776 centimeters.
a. Write and solve an inequality to find the length of the rectangle.
b. Write an inequality to find the area of the rectangle in square centimeters.


A. 2(33) + 2ℓ ≤ 776; ℓ ≤ 355; A ≤ 33(355)


B. 2(33) + 2ℓ ≥ 776; ℓ ≥ 335; A ≥ 33 + 335


C. 33 + ℓ ≥ 776; ℓ ≥ 743; A ≥ 33(743)


D. 2(33) + 2ℓ ≥ 776; ℓ ≥ 355; A ≥ 33(355)

Respuesta :

Answer:

D. 2(33) + 2ℓ ≥ 776; ℓ ≥ 355; A ≥ 33(355)

Step-by-step explanation:

Answer:

Width of the rectangle is given to be 33 centimeters

Let the Length of the rectangle be x centimeters

So, Perimeter of rectangle is given by formula : Perimeter = 2 × (Length + Width)

⇒ Perimeter = 2 × (x + 33)

⇒ Perimeter = 2x + 66

Now, The perimeter of the rectangle is at least 776 centimeters

⇒ Perimeter > 2x + 66

⇒ 776 > 2x + 66

⇒ 2x < 710

⇒ x < 355

So, The length of the rectangle must be less than 355 cm

⇒ Area of the rectangle < 355 × 33

⇒ Area of the rectangle < 11715 cm²

Ver imagen lalamcg115