Solution :
Given :
Velocity, [tex]$V_1 =100$[/tex] cm/sec
Pressure, [tex]$P_1 = 120 $[/tex] mm Hg
Then, [tex]$P_1 = \rho_1 g h$[/tex]
[tex]$P_1 = 0.120 \times 13.6 \times 1000 \times 9.81$[/tex]
= 16.0092 kPa
[tex]$P_2 = 110 $[/tex] mm Hg
[tex]$P_2 = \rho_2 g h$[/tex]
[tex]$= 0.110 \times 13.6 \times 1000 \times 9.81$[/tex]
= 14.675 kPa
Then blood is incompressible,
[tex]$A_1v_1=A_2v_2$[/tex]
[tex]$\frac{\pi}{4}(25)^2\times 100=\frac{\pi}{4}(21)^2\times v_2$[/tex]
[tex]$v_2=141.72 \ cm/s$[/tex]
Then the linear momentum conservation fluid :
(Blood ) in y - direction
[tex]$P_1A_1+ P_2A_2-F_g = m_2v_2-m_1v_1$[/tex]
[tex]$m_1=m_2=P_1A_1v_1$[/tex]
[tex]$=1.50 \times \frac{\pi}{4}\times (0.025)^2 \times 1.00$[/tex]
= 0.515 kg/ sec
Then the linear conservation of momentum of blood in y direction.
[tex]$P_1A_1+ P_2A_2-F_g = m_2v_2-m_1v_1$[/tex]
[tex]$16.0092 \times 1000 \times \frac{\pi}{4} \times (0.025)^2+14.675 \times 1000\times \frac{\pi}{4}\times (0.021)^2$[/tex]
[tex]$-F_y=0.515(-1.4172-1)$[/tex]
7.858+5.0828- Fy = 0.515(-2.4172)
Fy = 14.1856 N