Respuesta :
The diagonal WY is formed by connecting W and Y. The coordinates of its midpoint are the average of coordinates of the endpoints. Below are the calculations.
abscissa : (0 + 6) / 2 = 3
ordinate: (2 + 6) / 2 = 4
Thus, the midpoint is ate (3, 4).
abscissa : (0 + 6) / 2 = 3
ordinate: (2 + 6) / 2 = 4
Thus, the midpoint is ate (3, 4).
Answer:
[tex](3,4)[/tex]
Step-by-step explanation:
we know that
The formula to calculate the coordinates of the midpoint between two points is equal to
[tex]M(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]
we have that
The coordinates of diagonal WY are
[tex]W(0,2), Y(6,6)[/tex]
substitute in the formula to calculate the midpoint
[tex]M(\frac{0+6}{2},\frac{2+6}{2})[/tex]
[tex]M(\frac{6}{2},\frac{8}{2})[/tex]
[tex]M(3,4)[/tex]