Given:
Consider the given expression is
[tex]\log_59+\log_521-\log_57[/tex]
To find:
The simplified form of the given expression.
Solution:
We have,
[tex]\log_59+\log_521-\log_57[/tex]
It can be written as
[tex]=\log_5(9\times 21)-\log_57[/tex] [tex][\because \log_ax+\log_ay=log_a(xy)][/tex]
[tex]=\log_5\dfrac{9\times 21}{7}[/tex] [tex][\because \log_ax-\log_ay=log_a\dfrac{x}{y}][/tex]
[tex]=\log_5(9\times 3)[/tex]
[tex]=\log_527[/tex]
Therefore, the simplified form of the given expression is [tex]\log_527[/tex].