If f(x) = x2, and
g(x) = x - 1, then
f(g(x)) = ?

Answer:
f(g(x))=1x^2 +-2x+1
Step-by-step explanation:
your inputs should be
1
-2
1
If f(x) = [tex]x^{2}[/tex], g(x) = [tex]x -1[/tex] then f(g(x)) = [tex]1x^{2} -2x+1[/tex].
Function, in mathematics, an expression, rule, or law that defines a relationship between one variable (the independent variable) and another variable (the dependent variable).
Given
f(x) = [tex]x^{2}[/tex]
g(x) = [tex]x -1[/tex]
f(g(x)) = [tex](x-1)^{2}[/tex]
It is in the form of [tex](a-b)^{2}=a^{2} -2(a)(b) +b^{2}[/tex]
= [tex]x^{2} -2(x)(1) +1^{2}[/tex]
= [tex]x^{2} -2x+1[/tex]
f(g(x)) = [tex]1x^{2} -2x+1[/tex]
Hence, If f(x) = [tex]x^{2}[/tex], g(x) = [tex]x -1[/tex] then f(g(x)) = [tex]1x^{2} -2x+1[/tex].
Find out more information about function here
https://brainly.com/question/14708913
#SPJ2