Respuesta :
Answer:
(a): [tex]\bar x = 5.54[/tex] and [tex]Median = 4.86[/tex]
(b): [tex]\bar x = 5.27[/tex] and [tex]Median = 5.21[/tex]
(c): New York Yankees
Step-by-step explanation:
Given
Data of New York ERA and Baltimore ERA
Solving (a): Mean and Median of New York ERA
Mean is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
For New York ERA, n = 19. So, we have:
[tex]\bar x = \frac{3.13 + 2.88 + 4.99 + 3.99 + 4.68 + 5.80 + 6.81 + 0.98 + 4.86 + 5.93 + 2.88 + 3.92 + 4.08 + 3.00 + 7.50 + 9.00 + 5.40 + 7.36 + 18.00}{19}[/tex]
[tex]\bar x = \frac{105.19}{19}[/tex]
[tex]\bar x = 5.53631578947[/tex]
[tex]\bar x = 5.54[/tex]
To calculate the median value, we first arrange the data (in ascending order):
So, we have:
0.98, 2.88, 2.88, 3.00, 3.13, 3.92, 3.99, 4.08, 4.68, 4.86, 4.99, 5.40, 5.80, 5.93, 6.81, 7.50, 7.36, 9.00, 18.00
The median value of odd number of data is:
[tex]Median = \frac{1}{2}(n+1)\ th[/tex]
Substitute 19 for n
[tex]Median = \frac{1}{2}(19+1)\ th[/tex]
[tex]Median = \frac{1}{2}(20)\ th[/tex]
[tex]Median = 10th[/tex]
So, the median is the 10th item.
[tex]Median = 4.86[/tex]
(b): Mean and Median of Baltimore ERA
Mean is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
For Baltimore ERA, n = 17. So, we have:
[tex]\bar x = \frac{4.58+ 5.77+ 5.21+ 6.51+ 4.29+ 2.50+ 5.23+ 4.31+ 4.87+ 3.14+ 2.57+ 7.92+ 7.79+ 5.40+ 2.92+ 10.13+ 6.52}{17}[/tex]
[tex]\bar x = \frac{89.66}{17}[/tex]
[tex]\bar x = 5.27411764706[/tex]
[tex]\bar x = 5.27[/tex] --- approximated
Arrange in ascending order:
2.50 , 2.57 , 2.92 , 3.14 , 4.29 , 4.31 , 4.58 , 4.87 , 5.21, 5.23 , 5.40 ,5.77 , 6.51 , 6.52, 7.79 , 7.92 , 10.13
[tex]Median = \frac{1}{2}(n+1)\ th[/tex]
[tex]Median = \frac{1}{2}(17+1)th[/tex]
[tex]Median = \frac{1}{2}(18)th[/tex]
[tex]Median = 9th[/tex]
So, the median is the 9th item.
[tex]Median = 5.21[/tex]
(c): Who has a better record
Statistically, the average ERA of New York Yankees is better than the average ERA of Baltimore Orioles.
Hence, New York Yankees hold the better record