State the domain restriction(s) in interval notation of \displaystyle f\left(g\left(x\right)\right)f(g(x)) given: \displaystyle f\left(x\right)=\sqrt{3x-2}f(x)= 3x−2 ​ and \displaystyle g\left(x\right)=x-7g(x)=x−7

Respuesta :

Answer:

The interval notation for the domain is [tex][\frac{23}{3},\infty ][/tex].

Step-by-step explanation:

Consider the provided information.

It is given that [tex]\:f\left(x\right)=\sqrt{3x-2},\:\text{ and }\:g\left(x\right)=x-7[/tex]

We need to find the value of [tex]f\left(g\left(x\right)\right)[/tex].

Put the value of g(x) in  [tex]f\left(g\left(x\right)\right)[/tex].

[tex]f\left(g\left(x\right)\right)=f(x-7)[/tex]  ....(1)

Now, put x=x-7 in [tex]\:f\left(x\right)=\sqrt{3x-2}[/tex]

[tex]\:f\left(x-7\right)= \sqrt{3(x-7)-2}[/tex]

[tex]\:f\left(x-7\right)= \sqrt{3x-21-2}[/tex]

[tex]\:f\left(x-7\right)= \sqrt{3x-23}[/tex]

From equation 1.

[tex]f\left(g\left(x\right)\right)=\:f\left(x-7\right)= \sqrt{3x-23}[/tex]

The domain of the function is the set of input values for which a function is defined.

Here, the value of [tex]3x-23[/tex] should be greater or equal to 0 as the square root of a negative number is not real.

Domain= [tex]3x-23\geq0[/tex]

[tex]x\geq\frac{23}{3}[/tex]

The value of x is all real number greater than [tex]\frac{23}{3}[/tex].

Hence, the interval notation for the domain is [tex][\frac{23}{3},\infty ][/tex].