Mr. Greenjeans wants to make a triangle shaped garden. Two sides of the garden are 52 meters and 90 meters. The angle between these two sides is 102º. What is the area of the garden?

Respuesta :

Answer:

[tex]Area = 2288.754m^2[/tex]

Step-by-step explanation:

The given parameters can be represented as:

[tex]A = 52m[/tex]

[tex]B=90m[/tex]

[tex]\theta = 102^{\circ}[/tex]

Required

Determine the area of the garden

Provided that [tex]\theta[/tex] is between A and B, the area is:

[tex]Area = \frac{1}{2}AB sin(\theta)[/tex]

Substitute values for A, B and [tex]\theta[/tex]

[tex]Area = \frac{1}{2}AB sin(\theta)[/tex]

[tex]Area = \frac{1}{2} * 52 * 90 * sin(102)[/tex]

[tex]Area = \frac{1}{2} * 52 * 90 * 0.9781[/tex]

[tex]Area = \frac{52 * 90 * 0.9781}{2}[/tex]

[tex]Area = \frac{4577.508}{2}[/tex]

[tex]Area = 2288.754[/tex]

Hence, the area of the garden is [tex]2288.754m^2[/tex]