Respuesta :

Answer:

[tex] x = 6.25 [/tex]

Step-by-step explanation:

Given that ∆DFG ~ ∆RPQ, therefore, [tex] \frac{DF}{PR} = \frac{DG}{QR} = \frac{FG}{QP} [/tex] (similarity theorem).

DF = 10

PR = 8

DG = 5

QR = 4

QP = 5

FG = x

[tex] \frac{10}{8} = \frac{5}{4} = \frac{x}{5} [/tex]

Using [tex] \frac{5}{4} = \frac{x}{5} [/tex] , solve for x

cross multiply:

[tex] 4*x = 5*5 [/tex]

[tex] 4x = 25 [/tex]

[tex] x = \frac{25}{4} [/tex]

[tex] x = 6.25 [/tex]