check the attachment for the info. I would give brainly

Answer:
1) 0.9 as fraction is: [tex]\mathbf{\frac{9}{10}}[/tex]
2) Solve for c =4 for the equation [tex]2 \times (c^2-5)[/tex] we get 22
3) t = 64
4) p=3.15
5) Volume of Cuboid = 160 m³
6) x =9
Step-by-step explanation:
1) Write as fraction: 0.9
For writing the fraction, Since we have decimal point at tent's place so we can write it as: [tex]\frac{9}{10}[/tex]
So, 0.9 as fraction is: [tex]\mathbf{\frac{9}{10}}[/tex]
2) Solve for c =4
[tex]2 \times (c^2-5)[/tex]
Put c = 4 and find the answer
[tex]2 \times (c^2-5)\\Put\:c=4\\=2\times ((4)^2-5)\\=2\times (16-5)\\=2\times(11)\\=22[/tex]
So, Solve for c =4 for the equation [tex]2 \times (c^2-5)[/tex] we get 22
3) [tex]\frac{t}{4}=16[/tex]
We need to find value of t
Multiply both sides by 4
[tex]4\times\frac{t}{4}=16\times 4\\t=64[/tex]
So, we get t = 64
4) [tex]2.4p=7.56[/tex]
We need to find value of p
Divide both sides by 2.4
[tex]\frac{2.4p}{2.4}=\frac{7.56}{2.4}\\p=3.15[/tex]
So, we get p=3.15
5) Find Volume of Cuboid
The formula used is: [tex]Volume\:of\: Cuboid=Length\times Breadth \times Height[/tex]
We have Length = 4, Breadth = 8 and Height = 5
Putting values and finding volume:
[tex]Volume\:of\: Cuboid=Length\times Breadth \times Height\\Volume\:of\: Cuboid=4\times 8 \times 5\\Volume\:of\: Cuboid=160[/tex]
So, Volume of Cuboid = 160 m³
6) [tex]3x=27[/tex]
We need to find value of x
Divide both sides by 3
[tex]3x=27\\\frac{3x}{3}=\frac{27}{3}\\x=9[/tex]
We get x =9