Respuesta :

Answer:

1) 0.9 as fraction is:  [tex]\mathbf{\frac{9}{10}}[/tex]

2) Solve for c =4 for the equation [tex]2 \times (c^2-5)[/tex] we get 22

3) t = 64

4) p=3.15

5) Volume of Cuboid = 160 m³

6) x =9

Step-by-step explanation:

1) Write as fraction: 0.9

For writing the fraction, Since we have decimal point at tent's place so we can write it as: [tex]\frac{9}{10}[/tex]

So, 0.9 as fraction is:  [tex]\mathbf{\frac{9}{10}}[/tex]

2) Solve for c =4

[tex]2 \times (c^2-5)[/tex]

Put c = 4 and find the answer

[tex]2 \times (c^2-5)\\Put\:c=4\\=2\times ((4)^2-5)\\=2\times (16-5)\\=2\times(11)\\=22[/tex]

So, Solve for c =4 for the equation [tex]2 \times (c^2-5)[/tex] we get 22

3) [tex]\frac{t}{4}=16[/tex]

We need to find value of t

Multiply both sides by 4

[tex]4\times\frac{t}{4}=16\times 4\\t=64[/tex]

So, we get t = 64

4) [tex]2.4p=7.56[/tex]

We need to find value of p

Divide both sides by 2.4

[tex]\frac{2.4p}{2.4}=\frac{7.56}{2.4}\\p=3.15[/tex]

So, we get p=3.15

5) Find Volume of Cuboid

The formula used is: [tex]Volume\:of\: Cuboid=Length\times Breadth \times Height[/tex]

We have Length = 4, Breadth = 8 and Height = 5

Putting values and finding volume:

[tex]Volume\:of\: Cuboid=Length\times Breadth \times Height\\Volume\:of\: Cuboid=4\times 8 \times 5\\Volume\:of\: Cuboid=160[/tex]

So, Volume of Cuboid = 160 m³

6) [tex]3x=27[/tex]

We need to find value of x

Divide both sides by 3

[tex]3x=27\\\frac{3x}{3}=\frac{27}{3}\\x=9[/tex]

We get x =9