Respuesta :

Answer:

The graph in the attached figure

Step-by-step explanation:

we have

[tex]y=-(2x+6)^{2}+3[/tex]

Factor the leading coefficient

[tex]y=-(2(x+3))^{2}+3[/tex]

[tex]y=-4(x+3)^{2}+3[/tex]

This is the equation of a vertical parabola in vertex form

The parabola open downward

The vertex is a maximum

The vertex is the point (-3,3)

Find out the x-intercepts (values of x when the value of y is equal to zero)

For y=0

[tex]0=-4(x+3)^{2}+3[/tex]

[tex]4(x+3)^{2}=3[/tex]

[tex](x+3)^{2}=(3/4)[/tex]

square root both sides

[tex](x+3)=(+/-)\frac{\sqrt{3}}{2}[/tex]

[tex]x=-3(+/-)\frac{\sqrt{3}}{2}[/tex]

[tex]x1=-3+\frac{\sqrt{3}}{2}[/tex] ----->[tex]x1=-2.134[/tex]

[tex]x2=-3-\frac{\sqrt{3}}{2}[/tex] ----->[tex]x2=-3.866[/tex]

using a graphing tool

The graph in the attached figure

Ver imagen calculista