Respuesta :

Answer:

Proved

Step-by-step explanation:

Given

[tex](n+5)^2-(n+3)^2[/tex]

Required

Show that [tex](n+5)^2-(n+3)^2[/tex] is a multiple of 4

Expand each bracket

[tex](n+5)(n+5)-(n+3)(n+3)[/tex]

Open brackets

[tex]n^2 + 5x + 5x + 25 - (n^2 + 3x + 3x + 9)[/tex]

[tex]n^2 + 10x + 25 - (n^2 + 6x + 9)[/tex]

Open bracket

[tex]n^2 + 10x + 25 - n^2 - 6x - 9[/tex]

Collect Like Terms

[tex]- n^2 + n^2 - 6n + 10n + 25 - 9[/tex]

[tex]- 6n + 10n + 25 - 9[/tex]

[tex]4n + 25 - 9[/tex]

[tex]4n + 16[/tex]

Factorize

[tex]4(n + 4)[/tex]

Hence, the multiples of [tex](n+5)^2-(n+3)^2[/tex] are [tex]4[/tex] and [tex](n + 4)[/tex]