Answer:
Proved
Step-by-step explanation:
Given
[tex](n+5)^2-(n+3)^2[/tex]
Required
Show that [tex](n+5)^2-(n+3)^2[/tex] is a multiple of 4
Expand each bracket
[tex](n+5)(n+5)-(n+3)(n+3)[/tex]
Open brackets
[tex]n^2 + 5x + 5x + 25 - (n^2 + 3x + 3x + 9)[/tex]
[tex]n^2 + 10x + 25 - (n^2 + 6x + 9)[/tex]
Open bracket
[tex]n^2 + 10x + 25 - n^2 - 6x - 9[/tex]
Collect Like Terms
[tex]- n^2 + n^2 - 6n + 10n + 25 - 9[/tex]
[tex]- 6n + 10n + 25 - 9[/tex]
[tex]4n + 25 - 9[/tex]
[tex]4n + 16[/tex]
Factorize
[tex]4(n + 4)[/tex]
Hence, the multiples of [tex](n+5)^2-(n+3)^2[/tex] are [tex]4[/tex] and [tex](n + 4)[/tex]